675 research outputs found

    YF-17/ADEN system study

    Get PDF
    The YF-17 aircraft was evaluated as a candidate nonaxisymmetric nozzle flight demonstrator. Configuration design modifications, control system design, flight performance assessment, and program plan and cost we are summarized. Two aircraft configurations were studied. The first was modified as required to install only the augmented deflector exhaust nozzle (ADEN). The second one added a canard installation to take advantage of the full (up to 20 deg) nozzle vectoring capability. Results indicate that: (1) the program is feasible and can be accomplished at reasonable cost and low risk; (2) installation of ADEN increases the aircraft weight by 600 kg (1325 lb); (3) the control system can be modified to accomplish direct lift, pointing capability, variable static margin and deceleration modes of operation; (4) unvectored thrust-minus-drag is similar to the baseline YF-17; and (5) vectoring does not improve maneuvering performance. However, some potential benefits in direct lift, aircraft pointing, handling at low dynamic pressure and takeoff/landing ground roll are available. A 27 month program with 12 months of flight test is envisioned, with the cost estimated to be 15.9millionforthecanardequippedaircraftand15.9 million for the canard equipped aircraft and 13.2 million for the version without canard. The feasiblity of adding a thrust reverser to the YF-17/ADEN was investigated

    Developing Career Development Profiles of Student-Athletes: A Comparison with Non-Athletes

    Get PDF
    Student-athletes' and non-athletes' scores on several career-related assessments were compared. During the 1990-91 academic year at a medium-sized, state-supported university in the South, a sample of 41 student-athletes (83% males and 17% females) and 178 non-athletes (29% males and 71% females) completed the Values Scale (Super & Nevill, 1985b), Career Development Inventory (Super, Thompson, Lindeman, Jordaan, & Myers, 1981), and Salience Inventory (Super & Nevill, 1985a). Completion of these instruments was required for a semester-long, three-credit course in career/life planning. The student-athletes were non-revenue scholarship athletes representing a NCAA Division II institution in soccer, basketball, and tennis. Both groups contained students representing all class ranks, with a majority in both groups being white (93% of the student-athlete group and 69% of the non-athlete group. Results of two-way ANOVAs indicated that student-athletes highly value physical activity and spend more time in leisure activities than non-athletes. Only one significant gender effect was found: females had a higher score on the combined knowledge scale (M = 100.29) than males (M = 85.16) (F(1, 138) = 8.43, p < .006). The combined knowledge scale score is a linear combination of scores in decision-making and world-of-work information. This result indicates that females may be better able to apply career development principles to decision-making scenarios as well as demonstrate more knowledge of what it takes to get a job and succeed. No differences in career maturity scores were found. Implications for programming to accommodate the special needs of student-athletes are discussed

    Binary continuous random networks

    Full text link
    Many properties of disordered materials can be understood by looking at idealized structural models, in which the strain is as small as is possible in the absence of long-range order. For covalent amorphous semiconductors and glasses, such an idealized structural model, the continuous-random network, was introduced 70 years ago by Zachariasen. In this model, each atom is placed in a crystal-like local environment, with perfect coordination and chemical ordering, yet longer-range order is nonexistent. Defects, such as missing or added bonds, or chemical mismatches, however, are not accounted for. In this paper we explore under which conditions the idealized CRN model without defects captures the properties of the material, and under which conditions defects are an inherent part of the idealized model. We find that the density of defects in tetrahedral networks does not vary smoothly with variations in the interaction strengths, but jumps from close-to-zero to a finite density. Consequently, in certain materials, defects do not play a role except for being thermodynamical excitations, whereas in others they are a fundamental ingredient of the ideal structure.Comment: Article in honor of Mike Thorpe's 60th birthday (to appear in J. Phys: Cond Matt.

    Topology of amorphous tetrahedral semiconductors on intermediate lengthscales

    Full text link
    Using the recently-proposed ``activation-relaxation technique'' for optimizing complex structures, we develop a structural model appropriate to a-GaAs which is almost free of odd-membered rings, i.e., wrong bonds, and possesses an almost perfect coordination of four. The model is found to be superior to structures obtained from much more computer-intensive tight-binding or quantum molecular-dynamics simulations. For the elemental system a-Si, where wrong bonds do not exist, the cost in elastic energy for removing odd-membered rings is such that the traditional continuous-random network is appropriate. Our study thus provides, for the first time, direct information on the nature of intermediate-range topology in amorphous tetrahedral semiconductors.Comment: 4 pages, Latex and 2 postscript figure

    Structural, electronic, and dynamical properties of amorphous gallium arsenide: a comparison between two topological models

    Full text link
    We present a detailed study of the effect of local chemical ordering on the structural, electronic, and dynamical properties of amorphous gallium arsenide. Using the recently-proposed ``activation-relaxation technique'' and empirical potentials, we have constructed two 216-atom tetrahedral continuous random networks with different topological properties, which were further relaxed using tight-binding molecular dynamics. The first network corresponds to the traditional, amorphous, Polk-type, network, randomly decorated with Ga and As atoms. The second is an amorphous structure with a minimum of wrong (homopolar) bonds, and therefore a minimum of odd-membered atomic rings, and thus corresponds to the Connell-Temkin model. By comparing the structural, electronic, and dynamical properties of these two models, we show that the Connell-Temkin network is energetically favored over Polk, but that most properties are little affected by the differences in topology. We conclude that most indirect experimental evidence for the presence (or absence) of wrong bonds is much weaker than previously believed and that only direct structural measurements, i.e., of such quantities as partial radial distribution functions, can provide quantitative information on these defects in a-GaAs.Comment: 10 pages, 7 ps figures with eps

    Properties of a continuous-random-network model for amorphous systems

    Full text link
    We use a Monte Carlo bond-switching method to study systematically the thermodynamic properties of a "continuous random network" model, the canonical model for such amorphous systems as a-Si and a-SiO2_2. Simulations show first-order "melting" into an amorphous state, and clear evidence for a glass transition in the supercooled liquid. The random-network model is also extended to study heterogeneous structures, such as the interface between amorphous and crystalline Si.Comment: Revtex file with 4 figure

    Event-based relaxation of continuous disordered systems

    Full text link
    A computational approach is presented to obtain energy-minimized structures in glassy materials. This approach, the activation-relaxation technique (ART), achieves its efficiency by focusing on significant changes in the microscopic structure (events). The application of ART is illustrated with two examples: the structure of amorphous silicon, and the structure of Ni80P20, a metallic glass.Comment: 4 pages, revtex, epsf.sty, 3 figure

    The in-plane electrodynamics of the superconductivity in Bi2Sr2CaCu2O8+d: energy scales and spectral weight distribution

    Full text link
    The in-plane infrared and visible (3 meV-3 eV) reflectivity of Bi2Sr2CaCu2O8+d (Bi-2212) thin films is measured between 300 K and 10 K for different doping levels with unprecedented accuracy. The optical conductivity is derived through an accurate fitting procedure. We study the transfer of spectral weight from finite energy into the superfluid as the system becomes superconducting. In the over-doped regime, the superfluid develops at the expense of states lying below 60 meV, a conventional energy of the order of a few times the superconducting gap. In the underdoped regime, spectral weight is removed from up to 2 eV, far beyond any conventional scale. The intraband spectral weight change between the normal and superconducting state, if analyzed in terms of a change of kinetic energy is ~1 meV. Compared to the condensation energy, this figure addresses the issue of a kinetic energy driven mechanism.Comment: 13 pages with 9 figures include

    Traveling through potential energy landscapes of disordered materials: the activation-relaxation technique

    Full text link
    A detailed description of the activation-relaxation technique (ART) is presented. This method defines events in the configurational energy landscape of disordered materials, such as a-Si, glasses and polymers, in a two-step process: first, a configuration is activated from a local minimum to a nearby saddle-point; next, the configuration is relaxed to a new minimum; this allows for jumps over energy barriers much higher than what can be reached with standard techniques. Such events can serve as basic steps in equilibrium and kinetic Monte Carlo schemes.Comment: 7 pages, 2 postscript figure

    ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation Near Sgr A

    Get PDF
    Using ALMA observations of the Galactic center with a spatial resolution of 2.61" x 0.97 ", we detected 11 SiO (5-4) clumps of molecular gas in the within 0.6pc (15") of Sgr A*, interior of the 2-pc circumnuclear molecular ring. Three SiO (5-4) clumps closest to Sgr A* show the largest central velocities of approximately 150 kilometers per second and broadest asymmetric linewidths with total linewidths FWZI approximately 110-147 kilometers per second. Other clumps are distributed mainly to the NE of the ionized minispiral with narrow linewidths of FWHM approximately 11-27 kilometers per second. Using CARMA data, LVG modeling of the broad velocity clumps, the SiO (5-4) and (2-1) line ratios constrain the column density N(SiO) approximately 10(exp 14) per square centimeter, and the H2 gas density n(sub H2) = (3-9) x 10(exp 5) per cubic centimeter for an assumed kinetic temperature 100-200K. The SiO (5-4) clumps with broad and narrow linewidths are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104 years. Additional support for the presence of YSO outflows is that the luminosities and velocity widths lie in the range detected from protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources along the N arm show two YSO candidates near SiO clumps supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhance the gas density, before the gas cloud become gravitationally unstable near Sgr A*
    corecore